Our Energy Sources PROs & CONs

^{by} John F. Robbins CEM/CSDP 859-363-0376 *john@johnfrobbins.com www.johnfrobbins.com*

John F. Robbins CEM / CSDP

Design, Analysis, Consulting & Education to Improve Energy & Ecological Performance Since 1983 Mostly residential and small commercial projects 859.363.0376 john@johnfrobbins.com www.johnfrobbins.com

- Member, Association of Energy Engineers (AEE) (www.aeecenter.org) CEM - Certified Energy Manager since 1990 Current Board Member & Website Manager, SW Ohio Chapter (www.aeecincy.org)
- Developer and instructor since 2009 of technical energy seminars & continuing education programs sponsored by Halfmoon Seminars and Impact Management Services
- Adult-Ed Developer & Instructor 2005-2011, "Energy At Home" & "Solar Energy At Home", Great Oaks Institute, SW Ohio
- Leader, SW Ohio Alternate Energy Association (AEA) 1995-2005
- 1998 Ohio Governor's Award for Excellence in Energy Efficiency Education Category

KBC Energy Economics' Annual Long-Term Oil & Energy Outlook Report, 2012

Oil and natural gas from deep shale formations are transforming the United States economy and its energy outlook. Back in 2005, the US Energy Information Administration published projections of United States natural gas supply that stressed the need to develop an import infrastructure (1): by 2025, imports would account for almost one-third of United States consumption. When we compare those forecasts with the current ones to 2040, it is inevitable to feel that a disruptive technology has emerged since.

Natural gas consumption is expected to increase significantly over the next three decades, with strong demand growth from the electricity generation and industrial sectors. However, the United States will probably become a net exporter of gas before 2020, increasing domestic production by 44% over the projection period.

By Luis Cueto-Felguerosoa & Ruben Juanes for the National Academy of Sciences, 2016

Total Energy: Production

Case: Reference case

Source: U.S. Energy Information Administration Annual Energy Outlook 2015

Commercial Energy Use Intensity and Factors 2005, US DOE

Electricity usage is the fastest growing part of energy consumption in U.S. commercial buildings

Source: U.S. Energy Information Administration, Commercial Buildings Energy Consumption Survey.

thousand Btu per square foot

The only major recent reductions in commercial building energy use are for heating and lighting. Most other areas of energy use have increased usage. Water heating stayed about the same.

total consumption

Source: U.S. Energy Information Administration, 2012 Commercial Buildings Energy Consumption Survey.

Commercial Buildings Primary Energy End Use Splits (2010)

Source: DOE, 2011 Buildings Energy Data Book, Section 3.1.4, March 2012. http://buildingsdatabook.eren.doe.gov/.

Energy Use Intensity and Factors in the Residential Sector 2005, US DOE

Newer U.S. homes are 30% larger but consume about as much energy as older homes

Average household site energy consumption by end use, 2009 million Btu per household

Source: U.S. Energy Information Administration, Residential Energy Consumption Survey

eia

Residential Buildings Primary Energy End Use Splits (2010)

Source: DOE, 2011 Buildings Energy Data Book, Section 2.1.5, March 2012. http://buildingsdatabook.eren.doe.gov/.

U.S. Total Electricity Generation 1983 - 2015

Billion Kilowatthours

Conventional Electricity Fuel Mixes Vs Average CO2 Emissions Per kWh												
	Lbs CO2	Coal	Natural	Other	Potrol	Nuclear	Solar & Wind	Hydro	Geo-	Wood	Other	All
	регкит	Coar	Gas	Gases	Fello	Nuclear		nyuro	ulerinai	wood	DIOIIId 55	LISE
СА	0.47	1%	<mark>60%</mark>	1%		9%	6%	13%	6%	2%	1%	1%
IL	1.03	41%	6%			49%	4%					
IN	2.01	81%	13%	2%	1%		3%					
ΚΥ	2.11	92%	3%		2%			3%				
MO	1.81	13%	71%			13%				3%		
ОН	1.85	66%	17%	1%	1%	13%	1%					1%
TN	1.16	46%	10%			32%		11%		1%		
νт	0.002					76%	2%	17%		5%		
VA	1.03	20%	35%		1%	41%		1%			1%	1%
WV	2.02	96%					2%	2%				
USA	1.19	37%	30%		1%	19%	<mark>3%</mark>	7%		1%		2%
Source: US	EIA (for 2012	2)										
Germany	1.12	45%	11%		1%	15%	24%					4%
Source: AG	= iergiebilanz	en (ior	2013)									

What is a capacity factor?

Capacity factors describe how intensively a fleet of generators is run. A capacity factor near 100% means a fleet is operating nearly all of the time. It is the ratio of a fleet's actual generation to its maximum potential generation.

Monthly capacity factors for select renewable fuels and technologies

Period	Nuclear	Conventional Hydropower	Wind	Solar Photovoltaic	Solar Thermal	Landfill Gas and Muncipal Solid Waste	Other Biomass Including Wood	Geothermal
Annual Factors	S						1	
2014	91.7%	37.3%	34.0%	25.9%	19.8%	68.9%	58.9%	74.0%
2015	92.2%	35.9%	32.5%	28.6%	22.7%	67.6%	52.9%	71.7%
Year 2015								
January	101.3%	41.5%	31.7%	19.7%	5.1%	67.2%	55.3%	73.3%
February	95.8%	42.5%	34.5%	26.2%	15.9%	62.0%	58.4%	73.8%
March	88.0%	41.8%	31.7%	30.5%	24.2%	58.9%	50.5%	74.5%
April	84.2%	39.2%	37.8%	34.3%	32.5%	65.3%	41.7%	70.2%
Мау	89.7%	34.0%	35.2%	34.0%	31.1%	67.1%	48.0%	74.3%
June	96.4%	35.0%	28.3%	34.4%	34.5%	69.4%	54.3%	71.9%
July	97.2%	35.5%	27.7%	33.9%	35.1%	70.6%	59.9%	72.3%
August	98.6%	33.0%	26.0%	33.7%	32.8%	72.8%	61.3%	71.7%
Sept	93.5%	28.3%	28.3%	29.2%	27.5%	67.6%	52.0%	65.5%
October	82.5%	28.0%	31.9%	25.5%	16.7%	68.3%	46.3%	69.4%
November	84.8%	33.4%	39.0%	23.5%	17.1%	69.7%	51.0%	71.9%
December	94.8%	38.6%	37.5%	19.2%	9.6%	71.9%	56.0%	72.0%
Year 2016								
January	98.8%	42.4%	34.2%	17.9%	6.9%	69.2%	52.3%	72.8%

Capacity Factors for Utility Scale Generators Not Primarily Using Fossil Fuels

U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585

According to an NREL study of PVs in USA

"The Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems" - Tech.Rept. NREL/TP-6A2-46782, June 2010 www.nrel.gov/docs/fy10osti/46782.pdf

"On average, peak PV production and peak demand occurs three hours apart for all months. On a clear day, PV systems can provide between 44% and 69% of rated capacity three hours from solar peak in December and June."

Report also found that percent of PV rated capacity likely available during a utility's peak demand period (called *Average Capacity Value*) for all studied PV Systems & locations averaged 21% for all months, 30% - 40% Jun - Sep

Emissions From Conventional Energy

Air pollution produced to generate and/or use conventional energies includes particulates, carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen oxides (NOX) & mercury

CO2 EMISSION averages per common energies in the Ohio Valley region:

Energy Type	CO2 Emissions
Midwest USA Electricity	1.9 - 2.1 lbs per kWh
Heating Oil	26.4 lbs per gallon
Liquid Propane	12.5 lbs per gallon
Natural Gas	12.1 lbs per ČCF

AVERAGE CO2 EMISSIONS PER MILLION BTUS FOR LOCAL HTG & CLG

- 557 615 lbs for electric resistance heating (COP=1)
- 250 290 lbs for electric heatpump heating w/ resistance b/u (COP 2.4 2.0)
- 211 243 lbs for heating with oil at 90% 78% AFUE
- 190 210 lbs for electric cooling at SEER 10
- 146 162 lbs for electric cooling at SEER 13
- 142 175 lbs for heating with LP at 96% 78% AFUE
- 134 168 lbs for electric heating with geothermal (COP 4.4 3.5)
- 127 140 lbs for electric cooling at SEER 15
- 122 151 lbs for heating with ngas (96% 78% Efficiency)

Comparison of Growth Areas and Emissions, 1980-2014

www3.epa.gov/airtrends/aqtrends.html

CO2 Emissions from Conventional Electricity

Fuel	Lbs CO ₂ per kWh
Coal	
Bituminous	2.08
Sub-bituminous	2.16
Lignite	2.18
Natural gas	1.22
Distillate Oil (No. 2)	1.68
Residual Oil (No. 6)	1.81

Last updated: April 17, 2014

Source: US Energy Information Administration (EIA)

Ohio CO2 Emissions from Fossil Fuel Combustion - Million Metric Tons ((2204.6 lbs/metric ton)			n)	
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	
Ohio Total	263	254	259	266	262	268	262	268	262	238	248	237	217	
Commercial	11.5	11.1	11.1	11.5	11.5	10.9	9.4	10.3	11.1	10.8	10.5	10.6	9.6	4.4%
Industrial	38.9	39.0	37.3	38.0	37.0	35.8	37.1	38.8	38.7	32.9	36.3	35.3	37.1	17.1%
Residential	22.0	19.5	20.5	22.0	20.7	20.5	17.2	18.9	19.2	18.4	17.6	17.6	15.3	7.0%
Transportation	68.9	68.7	69.3	69.9	71.7	71.3	72.1	72.9	69.0	64.6	65.9	65.4	63.2	29.1%
Electric Power	121.7	115.3	121.3	125.1	121.0	129.3	125.7	127.4	124.3	111.0	117.8	108.0	92.1	42.4%
Source: US EIA publication	"State E	Energy (Consun	nption, l	Price, a	nd Expe	enditure	Estima	ates (SE	EDS)," S	Spring 2	014		
www.eia.doe.gov/emeu/st	ates/ s	eds.htn	nl											
Population (millions)	11.36	11.39	11.41	11.43	11.45	11.46	11.48	11.50	11.52	11.53	11.54	11.54	11.54	
Source: US Census Bure	au													
CO2 Per Ohioan	139.4	134.5	137.4	140.7	137.8	141.1	137.6	140.9	137.2	124.6	129.9	123.9	113.3	
(Lbs per person per day)														

Indiana CO2 Emissi	ions f	rom F	ossil	Fuel	Com	oustic	on - M	illion	Metrie	c Ton	(2204.	6 lbs/m	netric to	n)
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	
Indiana Total	234	224	228	233	234	233	231	231	227	206	216	208	194	
Commercial	6.3	5.6	5.9	6.7	6.4	5.4	4.7	5.1	6.2	5.8	5.5	5.4	4.7	2.4%
Industrial	52.8	54.4	54.1	54.7	<u>56.9</u>	53.6	53.3	52.7	49.9	43.9	47.7	45.9	44.3	22.8%
Residential	10.6	9.4	10.2	11.1	9.7	9.5	8.0	9.0	9.7	8.9	8.7	8.3	7.1	3.6%
Transportation	46.6	42.6	45.9	47.5	45.2	45.4	46.5	45.5	42.3	40.8	43.0	43.0	41.8	21.6%
Electric Power	117.3	112.3	111.7	113.4	115.9	118.8	118.7	118.8	119.1	106.0	111.1	105.8	96.2	49.6%
Source: US EIA publication	"State E	Energy (Consun	nption, I	Price, ai	nd Expe	enditure	Estima	ates (SE	EDS)," S	Spring 2	014		
www.eia.doe.gov/emeu/st	ates/ s	eds.htn	nl											
Population (millions)	6.09	6.13	6.16	6.20	6.23	6.28	6.33	6.38	6.42	6.46	6.49		6.48	
Source: US Census Bure	au													
CO2 Per Indianan	230.9	221.2	223.4	227.6	226.2	223.9	220.6	218.8	213.1	<u>192.2</u>	201.0		180.3	
(Lbs per person per day)														

KY CO2 Emissions	from	Fossi	I Fue	Com	busti	on - N	/ illion	Metr	ic Toı	ns	(2204.	6 lbs/m	netric to	on)
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	
Kentucky Total	145	148	149	145	152	154	157	157	154	145	151	148	138	
Commercial	3.2	3.0	3.1	3.0	3.1	3.0	2.5	2.5	2.6	2.4	2.4	2.3	2.1	1.5%
Industrial	19.1	22.2	21.5	20.7	23.4	23.1	24.5	23.4	22.6	20.9	19.4	18.6	17.6	12.7%
Residential	4.6	3.9	4.0	4.3	4.0	3.9	3.3	3.5	3.7	3.6	3.7	3.5	2.8	2.0%
Transportation	31.5	32.0	33.0	31.7	34.5	33.5	33.5	35.0	32.2	32.7	33.3	32.7	31.3	22.7%
Electric Power	86.2	87.2	87.0	85.1	87.1	90.2	93.0	92.2	92.9	85.0	91.9	91.3	84.4	61.1%
Source: US EIA publication	"State E	Energy (Consun	nption, l	Price, a	nd Expe	enditure	Estima	ates (SE	EDS)," S	Spring 2	014		
www.eia.doe.gov/emeu/st	ates/ s	eds.htn	<u>nl</u>											
Population (millions)	4.04	4.07	4.10	4.13	4.16	4.19	4.26	4.26	4.29	4.32	4.35	4.37	4.38	
Source: US Census Bure	au													
CO2 Per Kentuckian	<mark>215.5</mark>	219.9	218.8	211.5	<mark>219.8</mark>	221.4	<u>222.3</u>	<u>222.</u> 2	<mark>216.3</mark>	202.2	209.3	205.3	190.0	
(Lbs per person per day)														

2 choices for most energy users:

1) Reduce conventional energy use

2) Switch to less polluting conventional energies

		Туріса	I Emis	sions *	
	Particulates	SO2	NOx	Mercury	CO2
Coal	High	High	High	High	High
Ngas	Low	Low	Low	Low	Med
Petrol	Low	Med	Med	Low	High
Propane	Low	Low	Med	Low	Med
Wood & Waste	High				Low
	* With modern	equipm	ent & t	echnology	

	Think More A	bout Your Energy Choices:
	Pros	Cons
Coal	Abundant domestic supply & availability Relatively low long-term energy cost Acceptable for high load factor	Nonrenewable natural resource Upfront high investment cost Powerplant & waste siting restraints Much pollution or required pollution controls at powerplants Very high CO2 emissions Powerplant noise Heavy landscape impacts from extraction Water pollution typical from extraction Much in coal-mining is dangerous to workers Ash landfill failures are dangerous
Natural Gas	Abundant domestic supply & availability Less pollution and CO2 Relatively low upfront investment costs Relatively low long-term energy cost Acceptable for high load factor	Nonrenewable natural resource Powerplant noise Pipeline leak potential Explosive & toxic Environmental risks from fracking & deep-ocean wells Water pollution risks from frack-fluids
Petroleum	Abundant domestic supply & availability More mobile than other fossil fuels Acceptable for high load factor	Nonrenewable natural resource Abundant pollution and/or required pollution controls Very high CO2 emissions Explosive & toxic Pipeline & container leak potentials Environmental risks from fracking & deep-ocean wells Water pollution risks from leaks & frack-fluids

	Think More Ab	out Your Energy Choices:
	Pros	Cons
Uranium	Low conventional pollution and CO2 Acceptable for high load factor	Nonrenewable natural resource High terrorism potentials Mining is potentially hazardous Highly toxic long-life radioactivity Powerplant failures can be deadly High-level waste requires longterm secure storage Power plants require major upfront investments Least user-friendly of all energy options
Propane	Domestic availability Less pollution and CO2 More mobile than other fossil fuels	Nonrenewable natural resource Trucks & trains required for mobility Relatively high energy cost Pipeline & container leak potentials Explosive & toxic Environmental risks from fracking & deep-ocean wells Water pollution risks from leaks & frack-fluids
Wood, Biomass & Waste	Relatively low-cost Domestic availability Low CO2 Renewable natural & man-made resources	Fuel supplies more intermittent or geographically restricted Particulate pollution or required pollution controls

	Think More A	bout Your Energy Choices:
	Pros	Cons
Solar	Renewable	Higher upfront investment costs
	No fuel cost	Siting & orientation constraints
	No noise	Part-time intermittent supply
	No pollution or CO2	Requires storage or conventional energy for continuous supply
	Inexhaustible & abundant source energy	Difficult for high load factor
	User-friendly	
	Directly integratable with built environment	
	Direct heat gain possible with no conversion	
Wind	Renewable	Higher upfront investment costs
	No fuel cost	Siting & orientation constraints & restrictions
	No pollution or CO2	Part-time intermittent supply
	Inexhaustible & abundant source energy	Requires storage or conventional energy for continuous supply
		Generator noise
		Sun-related blade flicker & strobe effects
Efficiency	Renewable	Upfront investment costs
-	No fuel cost	
	No noise	
	No pollution or CO2	
	Highly available domestically	
	Directly integratable with built environment	
	User-friendly	
Conservation	Renewable	Requires user choices to reduce or avoid energy usage
	No fuel cost	
	No noise	
	No pollution or CO2	
	Highly available domestically	
	Lowest cost of all energy choices	
	Most user-friendly of all options	John F. Robbins May 2016

Energy Breakdown - Older, Partially Improved 3-Story Urban Home 2025sf, 2 Adult Occupants Full-Time, 1 Part-Time Occupant

Energy Breakdown - Newer Upscale Very Efficient 2-Floor Home 3200sf 2 Adult Occupants

Solar Heating Percent Depends on Home's Thermal Efficiency

	2000	House condition % of floor area	oned floor area a for south wind	dow or collecto					
	0.80	Solar access %	%						
	0.90	Solar Collector	r & Delivery Ef	ficiency					
a . a : .		0.07		550					
Greater Cincin		OCI	NOV	DEC	JAN	FEB	MAR	ARP	OCI-APR
	2	319	614	944	1100	899	686	350	
Solar KBTU/ST		30.2	26.5	25.6	21.9	20.7	35.2	32.0	May Calar Lite
Solar BTU		2,391,840	2,098,800	2,027,520	1,734,480	1,639,440	2,787,840	2,534,400	Max Solar Fig
									Foleniiai W/
Hta BTU/s	f-hdd								BTU/vear sBTU/vear
USA Best	1	638,000	1,228,000	1,888,000	2,200,000	1,798,000	1,372,000	700.000	9,824,000 9,199,920 94%
My Best	2	1,276,000	2,456,000	3,776,000	4,400,000	3,596,000	2,744,000	1,400,000	19,648,000 12,920,240 66%
	3	1,914,000	3,684,000	5,664,000	6,600,000	5,394,000	4,116,000	2,100,000	29,472,000 14,302,080 49%
	4	2,552,000	4,912,000	7,552,000	8,800,000	7,192,000	5,488,000	2,800,000	39,296,000 15,214,320 39%
	5	3,190,000	6,140,000	9,440,000	11,000,000	8,990,000	6,860,000	3,500,000	49,120,000 15,214,320 31%
Normal Least	6	3,828,000	7,368,000	11,328,000	13,200,000	10,788,000	8,232,000	4,200,000	58,944,000 15,214,320 26%
	7	4,466,000	8,596,000	13,216,000	15,400,000	12,586,000	9,604,000	4,900,000	68,768,000 15,214,320 22%
	8	5,104,000	9,824,000	15,104,000	17,600,000	14,384,000	10,976,000	5,600,000	78,592,000 15,214,320 19%
Average	9_	5,742,000	11,052,000	16,992,000	19,800,000	16,182,000	12,348,000	6,300,000	88,416,000 15,214,320 17%
	10	6,380,000	12,280,000	18,880,000	22,000,000	17,980,000	13,720,000	7,000,000	98,240,000 15,214,320 15%
	11	7,018,000	13,508,000	20,768,000	24,200,000	19,778,000	15,092,000	7,700,000	108,064,00015,214,320 14%
	12	7,656,000	14,736,000	22,656,000	26,400,000	21,576,000	16,464,000	8,400,000	117,888,00015,214,320 13%
	13	8,294,000	15,964,000	24,544,000	28,600,000	23,374,000	17,836,000	9,100,000	127,712,00015,214,320 12%
	14	8,932,000	17,192,000	26,432,000	30,800,000	25,172,000	19,208,000	9,800,000	137,536,00015,214,320 11%
Normal Most	15	9,570,000	18,420,000	28,320,000	33,000,000	26,970,000	20,580,000	10,500,000	147,360,00015,214,320 10%
	16	10,208,000	19,648,000	30,208,000	35,200,000	28,768,000	21,952,000	11,200,000	157,184,00015,214,320 10%
	17	10,846,000	20,876,000	32,096,000	37,400,000	30,566,000	23,324,000	11,900,000	167,008,000 15,214,320 9%
	18	11,484,000	22,104,000	33,984,000	39,600,000	32,364,000	24,696,000	12,600,000	1/6,832,00015,214,320 9%
	19	12,122,000	23,332,000	35,8/2,000	41,800,000	34,162,000	26,068,000	13,300,000	186,656,000 15,214,320 8%
	20	12,760,000	24,560,000	37,760,000	44,000,000	35,960,000	27,440,000	14,000,000	196,480,00015,214,320 8%

BALANCE POWER FLOWS BY DESIGN

SEASONALLY PREDICTABLE SUNLIGHT SEASONALLY PREDICTABLE POWER DEMAND SOLAR & RENEWABLE POWER SUPPLY & POTENTIAL

LESS POWER SUPPLY NEEDED FOR LOWER POWER CONSUMPTION MORE POWER SUPPLY NEEDED FOR GREATER POWER CONSUMPTION

Table CE1.1 Summary Household [Site] Energy Consumption in the U.S., 2009 - EIA								
Housing Unit Characteristics	Total Housing Units	Percent	Average	Average	Average	Average	Average	Average
and		Of	Household	Floor	Per	Consumption Per Member (million Btu)	Per Square Foot (thousand Btu)	Per
Energy Usage Indicators		Total	Members	Area (SF)	Member			Household
								(million Btu)
Total U.S	113.6		2.6	1969	767	34.9	45.5	89.6
Year of Construction								
Before 1940	14.4	13%	2.4	2134	882	45.5	51.6	110.1
1940 to 1949	5.2	5%	2.7	1860	700	36.4	52.0	96.7
1950 to 1959	13.5	12%	2.5	1850	726	38.1	52.5	97.1
1960 to 1969	13.3	12%	2.5	1751	713	35.8	50.2	87.9
1970 to 1979	18.3	16%	2.5	1684	665	31.2	46.9	79.0
1980 to 1989	17.0	15%	2.5	1770	706	30.7	43.5	77.0
1990 to 1999	16.4	14%	2.7	2201	827	33.0	39.9	87.8
2000 to 2009	15.6	14%	2.8	2466	873	32.4	37.1	91.5
15% less than average new - EnergyStar Minimum Level27.531.5								
30% less than average new - EnergyStar Typical Maximum Expectation 22.7 26.0								
50% less than average new						16.2	18.6	

Table CE1.1 Summary Household [Site] Energy Consumption in the U.S., 2009 - EIA

Housing Unit Characteristics and Energy Usage Indicators	Total Housing Units (millions)	Percent Of Total	Average Household Members	Average Floor Area (SF)	Average Floor Area (SF) Per Member	Average Consumption Per Member (million Btu)	Average Consumption Per Square Foot (thousand Btu)	Average Consumption Per Household (million Btu)
Total U.S	113.6		2.6	1969	767	34.9	45.5	89.6
Household Size								
1 Person	31.3	28%	1.0	1449	1449	65.8	45.4	65.8
2 Persons	35.8	32%	2.0	2095	1048	45.4	43.3	90.7
3 Persons	18.1	16%	3.0	2054	685	32.8	47.9	98.4
4 Persons	15.7	14%	4.0	2318	580	26.6	45.9	106.4
5 Persons	7.7	7%	5.0	2330	466	22.2	47.6	110.9
6 or Mbre Persons	5.0	4%	6.7	2397	357	16.9	47.4	113.6

Ohio Valley Household Energy Surveys 2001-2012

Download @ www.johnfrobbins.com/home_energy_surveys.htm

Annual EUI (kBTU/sf)	Best:	14.0	-	16.7
х ,	Avg:	35.6	-	53.6
	Worst:	76.5	-	240.6

Annual PEUI (mmBTU/person)	Best:	7.7	-	15.7
	Avg:	31.7	-	42.3
١	Norst:	67.4	-	106.9

	-	-	Owner	Renting	
Developer	Designer	Builder	Occupant	Occupant	
_					Siting & Design
Х	Х	Х	Х	Х	Orientation to optimize solar energy & natural ventilation
Х			Х	Х	Location to minimize energy for regular driving
Х	Х		Х	Х	Passive solar design, natural ventilation, solar water heating
			Х	Х	Smallest appropriate size & space per persons & processes
	Х				Lowest ratio of exterior surface areas per floor area
Х	Х		Х		Least complicated structure & support systems
	Х		Х		Owner/occupant participation in planning & design
Х	Х	Х	Х	Х	Commitment to low energy use & pollution
Х	Х		Х		Estimation of energy use & pollution during design & planning
					Building Components
	Х	Х			Airtightness, high R-value & moisture tolerance
Х	Х	Х	Х	Х	Specs driven to achieve energy performance targets
	Х		Х		Low or known & acceptable maintenance requirements
	Х	Х			Lower embodied energy during manufacturing & delivery
	Х	Х	Х	Х	Less toxic materials & substances, esp. inside the home
	Х	Х			Less waste requirements
					Construction & Installations
	Х	Х	Х		Contractors & installers informed about energy & pollution goals
	Х	Х	Х		Inspections of energy details during construction
	Х	Х	Х		Contractors & installers educated and assisted as needed
		Х			Reduced waste during construction
					Efficient Operations & Upkeep
			Х	Х	Minimized energy usage, especially electricity
			Х	Х	Daylighting, energy-efficient electric lamps & appliances
	Х	Х	Х	Х	Regular assessment of energy use relative to design targets
			Х	Х	Least pollution & waste by house operations
			Х	Х	Low transportation energy needs
			Х	Х	Regular maintenance & systems checks
			Х	Х	Least energy, pollution & watering for yard maintenance

Who Is Usually Responsible...

For Which Opportunities?

As much as 1/4 to 1/3 of low energy achievement is upto occupants & users

How best to achieve less energy usage via widespread efficiency & conservation:

1) More participation

choosing to reduce their energy usage and knowing how low to aim

2) Better energy programs

encouraging and rewarding for actual reductions achieving aggragate reductions at powerplant scale

3) Consistent energy policies

teaching and aiming for longer-term focus discouraging high usage and rewarding low usage

Cartoon-like image from an old REAL GOODS catalog

End of this course

John F. Robbins CEM/CSDP 859.363.0376 john@johnfrobbins.com www.johnfrobbins.com